
Whitepaper: Financial Services | 1

Building Secure Applications:
Recommendations for Financial Services

W H I T E P A P E R

Whitepaper: Financial Services | 2

• Regulatory Requirements for Financial Services 3

• The Changing Application and Software Development World 4

• The Shift from Waterfall Software Development Methodologies 4

• The Dawn of DevOps Deployments 4

• The Rise of Open Source 5

• Security Testing Must Adapt to the New Paradigm 6

• Five Steps to Building More-Secure Applications 7

• 1. Risk Rank Applications 7

• 2. Establish Clear Security Requirements 8

• 3. Identify Vulnerabilities Throughout the SDLC 8

• 4. Empower Developers to Code Securely from the Start 10

• 5. Remember that Application Security Is Not a Once-and-Done 10

• Conclusion 12

Introduction

Whitepaper: Financial Services | 3

Regulatory Requirements for Financial Services
Financial services organizations operate under a host of

regulatory standards. This makes sense, as the assets and

information managed by these firms are valuable, sensitive, and

targeted by sophisticated cyber attackers daily. Compounding

these challenges is the large volume of personally identifiable

information (PII) that financial organizations handle regularly.

PII is subject to many regulations and standards, particularly

Graham, Leach, Bliley (GLBA), the Payment Card Industry Data

Security Standard (PCI-DSS), and the Sarbanes Oxley Act (SOX).

Today, the General Data Protection Regulation (GDPR) is also

top-of-mind, as it regulates not only the processing of personal

data, including PII of individuals in the European Union, but

also for any organization that processes personal data of EU

residents. For U.S. banking consumers, Section 5 (Unfair or

Deceptive Acts or Practices) of the Federal Trade Commission

Act and numerous state regulations enforce basic consumer

protections, which financial organizations must also uphold.

The regulatory landscape for financial services organizations

continues to expand. The intent, of course, is to protect

customers’ investments and sensitive information as well

as preventing fraud. Organizations subject to these regulations

and standards must navigate a wide range of stringent

requirements.

Some are quite explicit; the PCI-DSS includes specific activities

organizations must follow (for example, the use of manual or

automated processes to identify common vulnerabilities such

as SQL injection, cross-site request forgery, cross-site scripting,

buffer overflows, and others). Other regulations are quite

general, simply stating that PII must be secured from attacks.

While the various regulations and standards take different

approaches, they require the same reasonable security

approaches. Most notably, to comply with any of the major

regulatory standards, organizations must have visibility into

risks and vulnerabilities in their software and systems (by

conducting regular vulnerability assessments) and a plan for

addressing the vulnerabilities (by establishing and following

a vulnerability management plan).

Vulnerability assessments can occur in a number of ways.

For example, there are commercial solutions for scanning

environments to identify unpatched or misconfigured

applications or systems. While useful, these solutions focus

on commercial software and operating systems such as Linux

and Windows. These types of scans are blind to the thousands

of in-house applications built and maintained by most

financial services organizations. In-house applications require

a different set of skills and solutions for identifying and

addressing vulnerabilities.

Whitepaper: Financial Services | 4

The Changing Application and Software
Development World
Recently, software development has dramatically changed in three significant ways,
forcing application security to change as well.

The Shift from Waterfall Software
Development Methodologies
In the past, most software development projects used

a waterfall development model. In this model, teams

followed a structured process of requirements gathering,

software design, implementation/coding specific to a release,

verification/testing of that release, and ongoing maintenance.

The development life cycle might last for months, with two or

three major releases each year. Application security testing,

if done at all, was conducted by autonomous security teams

late in the development life cycle.

While still used for some larger, legacy applications,

organizations now view quicker software development

cycles as a way of gaining a competitive advantage, and

increasingly, as a business requirement.

These faster software development methodologies, such as

Agile, focus on integrated teams including software architects,

developers, and functional and security testing teams working

together to deliver usable features as quickly as possible.

By listening closely to customers – and implementing newly

discovered requirements quickly – organizations may gain

market share against slower competitors.

The Dawn of DevOps Deployments
Using Agile development processes can help organizations

build and deliver software faster. Adding DevOps concepts

such as Continuous Integration and Continuous Delivery (CI/CD)

into an Agile environment helps break down silos by integrating

software development and software operations, increase quality

and efficiency, and make incremental changes available to users

more quickly. Continuous integration (CI) refers to the process

by which new code is made part of the mainline codebase

with minimal delays. Continuous delivery (CD) is a software

development practice in which every code change goes through

the entire pipeline and is made available to end users quickly.

Whitepaper: Financial Services | 5

The keys to a successful DevOps migration requires the use

of appropriate tools and automation. While the tools may differ

by organization, a continuous integration (CI) pipeline such

as Jenkins or TeamCity is critical to successfully automating

processes. For example, a CI pipeline allows organizations to

automate security testing during the build process and also

leverage existing functional testing with security automation

during the CD process.

The Rise of Open Source
Years ago, in-house software development teams created

custom software from top to bottom. Open source components

were viewed as dangerous and were rarely used due to their

unknown origin and unusual licensing models. As the open

source community grew, so did acceptance of popular open

source projects including Linux, OpenSSL, and frameworks

such as Apache Struts. Today, open source software often

comprises the majority of codebases in both in-house and

commercial software.

Open source components and frameworks offer many benefits,

such as eliminating the need to write common functions from

scratch, thereby lowering development costs and accelerating

time-to-market. But open source deployments also introduce

new risks to an organization. Each year, more than 3,000 new

vulnerabilities are disclosed in open source. Often, exploits for

these vulnerabilities are publicly available within days of public

disclosure – providing cyber attackers with a simple attack

vector without much effort. In 2017, this risk was dramatically

demonstrated in a high-profile breach, when a publicly disclosed

vulnerability in Apache Struts was exploited. The hackers stole PII

of more than 148 million consumers, resulting in a $6 billion loss

for the organization’s market capitalization, and the dismissal of

the company’s CEO, CIO, and CSO.

1. Reduces time-to-market

2. Automates manual, labor-intensive processes

3. Fosters cross-team collaboration

4. Increases operational efficiency

5. Improves overall performance

6. Streamlines compliance and simplifies audits

7. Reduces development and IT infrastructure costs

8. Improves quality

9. Enhances the customer experience

10. Reduce downtime, failures, and rollbacks

Benefits of DevOps for
Financial Services Organizations10

Whitepaper: Financial Services | 6

Security Testing Must Adapt to the New Paradigm
This new software development paradigm requires security

teams to adapt, as delays caused by “out of band” – or new/

different – processes will effectively break the DevOps model.

This starts with clearly defining and building bug identification

and threat remediation directly into everyday processes –

not bolting them on at the end. Functional and security testing

must also occur automatically as part of the process. The speed

of DevOps cannot tolerate separate testing cycles. And it’s

important to remember that when it comes to DevOps, security

expertise and tooling are just as critical as CI orchestration or

functional testing.

Full visibility into the open source components in internally

developed software is also required to effectively secure the

modern software development life cycle (SDLC). Application

Security Testing (AST) solutions, including static and interactive

analysis, are exceptional at identifying coding errors that may

result in security vulnerabilities in custom code. Unfortunately,

static and interactive analysis solutions are ineffective at

identifying even previously disclosed vulnerabilities in open

source software. To address the open source portion of the

codebase, software composition and open source analysis

solutions are required. These solutions scan software to produce

a list of all open source components in use, then map those

components to vulnerability databases to identify components

with known vulnerabilities.

Whitepaper: Financial Services | 7

1. Risk Rank Applications
Many financial services organizations have software

development teams that dwarf those of large commercial

software companies. In fact, some global banking organizations

have over 20,000 software engineers building and supporting

thousands of individual applications. Securing the modern

software development life cycle is an extremely challenging role

for today’s financial organizations. With an ever-expanding cyber

attack surface, security teams often feel like they need to “boil

the ocean” so to speak. But from a business risk perspective,

not all applications are equal.

The first step in reducing risk is to quantify the inherent risk

associated with each application. This can be accomplished by

using a risk-prioritized methodology to rank applications based

on potential damage to the firm’s business goals as a result

of a successful attack. For example, the security of an online

banking application that allows customers to transfer funds,

perform large transactions, and change privileges is crucial to

a bank’s business goals. A breach of that application could

cause financial, regulatory, and reputational damage to the

bank. Likewise, applications that manage information subject

to security standards such as PCI-DSS are viewed as critical

and must be secured.

However, there are internal applications that do not process

sensitive information or have a limited attack surface. In terms

of business value, these applications are less critical and do not

warrant the same scrutiny from a security standpoint.

Risk ranking applications can empower time- and resource-

constrained security teams within financial services organizations

to apply appropriate resources to the applications with the most

risk, while maximizing operational efficiency.

Five Steps to Building More-Secure Applications
While financial service organizations are under constant attack from adversaries, there
are specific steps they can take to address security in the software they create.

Whitepaper: Financial Services | 8

2. Establish Clear Security Requirements
To achieve true “DevSecOps,” developers, security teams,

and operations teams must agree in advance on the metrics

for adequate security. This requires open and ongoing

communication and collaboration between teams. Metrics

will differ for various application types, based on risk ranking

and the organization’s unique appetite for risk.

For open source components, these requirements must include

an understanding of each project, including:

• How well a project is supported by the community. An

unsupported open source project can result in unplanned

management and ongoing maintenance for the internal

IT operations team.

• The component’s security history. It’s important to review

how many vulnerabilities have been disclosed to date and

how quickly the community fixes them.

• The open source licenses requirements. It’s equally important

to identify associated software licenses to uphold compliance

and adhere to restrictions.

For custom code and the complete application, it’s essential to

have an agreement in place explicitly stating when security testing

will occur and what conditions will necessitate breaking a build.

For example, an organization may dictate that applications cannot

be deployed if a “severe” vulnerability is identified. Some

may elect to stop a build when that condition is found, while

others may choose to allow a build to continue even with

severe vulnerabilities, if it is not slated for release

to a production environment.

3. Identify Vulnerabilities Throughout the SDLC
Security must be integrated into all phases of the software

development life cycle. This approach will not only improve

security in DevOps environments, but will also accelerate time-

to-market and lower development cost, since vulnerabilities

found earlier in the SDLC are usually less complicated and

less costly to remediate.

Static application security testing (SAST) solutions integrate into

the SDLC from the beginning of the code phase, through check-

in and build. Open source analysis (OSA) can be used in the

earliest builds to identify open source dependencies and map

those components to publicly disclosed vulnerabilities, continuing

through the test/QA phase. Integrated application security testing

(IAST) solutions used during functional testing in the test/QA stage

are also required. It’s critical to have SAST, OSA, and IAST solutions

that integrate into the CI orchestration so teams can automate

processes and perform incremental scans of only the code that

has changed. Solutions that require hours to scan a complete

build do not fit well into a DevOps environment.

Whitepaper: Financial Services | 9

For in-house software, security teams must remember that open source and custom code require different testing methodologies

to identify risk and gain true visibility into the security of their software.

Ops

MONITOR

DEPLOY

O
P

E
R

A
T

E

Dev

CxOSA

C
xI

A
ST

C
x
S

A
S
T

CxCodebashing

A
p

p
S

e
c
 A

cc
e

le
ra

to
rT

M

Data Export API

 BUILD

 T

EST
/Q

A

 C
H

E
C

K
IN

 CODE
 DESIG

N

The diagram above highlights where the Checkmarx solutions fit within DevOps.

• CxIAST - Interactive Application Security Testing

• CxCodebashing - Gamified Secure Coding Education

• AppSec Accelerator - Managed Software Security Testing

• CxSAST - Static Application Security Testing

• CxOSA - Open Source Analysis (also know as Software

Composition Analysis)

Whitepaper: Financial Services | 10

4. Empower Developers to Code Securely from the Start
To address security at the beginning of the development life cycle, it’s important for security teams to take an active role in engaging

and collaborating with their DevOps counterparts. Education is a huge part of this. Security teams should train DevOps teams on

specific attack methods and popular hacking techniques, provide the educational tools they need to identify vulnerabilities as they

write code, and act as a sounding board throughout the process. By providing ongoing feedback and being available to answer secure

coding questions on demand, security teams can greatly reduce the time required to fix vulnerabilities, resulting in better security

and more predictable software delivery. By establishing best practices and making Secure Coding Education (SCE) an ongoing process,

security teams can make it easy for developers to code securely from the start. Further, developers will be more receptive to training

when it’s relevant, retain lessons learned, and ultimately, become security champions for the organizations.

5. Remember that Application Security Is Not a Once-and-Done
Open source components and frameworks offer clear advantages, including lowering development costs and accelerating time-to-

market. To maintain strong security, open source components must be analyzed during the coding and building phases. But it can’t

end there. It’s critical to continue monitoring open source software for newly disclosed vulnerabilities throughout the SDLC. Some

vulnerabilities such as ShellShock (CVE-2014-6271) were discovered decades after the original vulnerability was created. Without

visibility into both the version of the open source component and its location in the codebase, it’s impossible to find and fix those

vulnerabilities. Effective application security should be continuous.

About Checkmarx
Software Security for DevOps and Beyond.

Checkmarx makes software security essential infrastructure: unified with DevOps, and seamlessly

embedded into your entire CI/CD pipeline, from uncompiled code to runtime testing. Our holistic platform

sets the new standard for instilling security into modern development. Learn more here.

Conclusion
Today, malevolent actors deliver PII used for identity theft in

vast quantities, while impacts of a data breach go far beyond

embarrassment. Today’s breaches cause loss of reputation,

significant loss to shareholder value, and even dismissal of

corporate leadership. These breaches also bring significant fines

due to ever-increasing regulations, along with heightened

legislative inquiries, and public distrust.

The way financial services organizations build software today is

dramatically different than just 10 years ago. New development

models deliver software faster than ever before to meet changing

consumer demands, maximize operational efficiency, and

drive digital transformation. In the highly competitive financial

services market, it is simply no longer an option to deliver

software that hasn’t been tested for security issues throughout

the development process. The risks are far too great. Software

is everywhere, and users rely on both the software itself and its

security to complete billions of transactions a day. It’s time to

build security in from the start of the SDLC to better manage,

measure, and address risk, empower development teams, and

guarantee secure software delivery at the speed of DevOps.

https://www.checkmarx.com/about-checkmarx

